175P-Utility of artificial intelligence (AI) in Ki-67 scoring of a breast cancer (BC) patient population

<u>Xavier Pichon</u>¹, Rania Gaspo¹, Darshan Kumar², Saana Rekinen², Sabine Iglesias¹ and Amanda Finan¹

¹Cerba Research, Montpellier, France and Montreal, Canada; ²Aiforia Technologies Plc., Helsinki, Finland.

Background

Ki-67 is an important breast cancer (BC) marker, especially for adjuvant treatment in HR+, HER2- cases. Working groups have provided guidance for Ki-67 immunohistochemistry (IHC) BC scoring to limit pathologist's variability, but no scoring method has been universally accepted. Rapid and reliable image analysis solutions to support scoring have surfaced for the Ki-67 assessment. We compared Ki-67 scoring with Aiforia® platform (AI deep learning image analysis), Halo® (image analysis supervised software) and two independent pathologists (patho) in a breast cancer population.

Method

We stained 114 breast cancer tumors for Ki-67 (Ki-67 clone MIB-1, ref GA626-Agilent) on the Dako Omnis platform. Three methodologies were used to quantify Ki-67+ tumor cells:

- 1) A deep learning approach model was trained for breast cancer detection and the Ki-67 MIB-1 clone by Aiforia®;
- 2) Two pathologists (Patho 1 and Patho 2) were trained following the International Ki67 Working Group (IKWG) guidelines (1,2). Intra-analysis assessment was done for one pathologist. The selected pathologist re-read the samples after a three week washout period;
- 3) The random forest classifier from Halo® was used to separate the image into tumor, non-tumor and background with pathologist approval. After cell segmentation, Ki67 positivity was assessed by thresholding (3).
- 4) The time needed to complete the analyses was recorded for each method.

Fig 1. Example of an IHC Ki-67 staining workflow from a breast cancer specimen (invasive carcinoma).

Results: Image analysis illustrations

Fig 2. Image analysis illustration. From left to right: Ki-67 IHC, DAB detection (brown), hematoxylin counterstain (A). The Halo classifier with the tumor area in red, the non-tumor area in green and the background in yellow (B). Halo analysis markup Ki-67, (blue: nuclei and in yellow: positive cells (C)). Aiforia tissu detection with the tumor area in purple, the nontumor area in green (D). Aiforia analysis markup Ki-67 blue: negative cells and in red: positive cells (E)).

Results: Ki-67 quantification results on breast cancer

Out of 114 cores, only 109 were analyzed due to absence of tissue and/or pathologists unable to score. Ki-67+ cells were detected in 7.79 - 12.33% of tumor cells on average depending on the analysis approach applied (table 1). Our study shows a very high consistency of results obtained for Ki-67 scoring between the two image analysis softwares, Aiforia® and Halo® (r²=0.93), on breast tumors analyzed. The correlation obtained between the pathologists was, however, weaker (mean r^2 =0.86), despite appropriate training and following of guidelines, but remains within an acceptable range (table 2).

n=109	Mean %Ki-67+		
Aiforia [®]	10.06		
Halo®	7.79		
Patho 1	8.41		
Patho 2	12.33		
Patho 1 (2 nd read)	9.03		

Table 1: Ki-67 quantification results on breast cancer tumors analyzed.

Disclosures: XP, SI & AF are Cerba Research employees. RG is a consultant and DK & SR are Aiforia Technologies Plc employees. Study is sponsored by Cerba Research. xpichon@cerbaresearch.com

Results: Matched pairs analysis of Ki-67 quantification on breast cancer

Results: Summary of Ki-67 quantification analysis on breast cancer

Matched pairs analysis (n=109)	Mean difference of %Ki-67+	Prob > ItI	Std Err	Prob > t	r ²
Halo-Aiforia	-2.27	<0.0001*	0.55	1.000	0.93
Patho1-Aiforia	-1.65	0.0018*	0.51	0.9991	0.92
Patho 2-Aiforia	2.27	0.0004*	0.62	0.0002*	0.89
Patho 2-Patho 1	3.92	<0.0001*	0.75	<0.0001*	0.86
Halo-Patho 1	-0.62	0.3196	0.62	0.8402	0.79
Halo-Patho 2	-4.54	<0.0001*	0.81	1.0000	0.84
Patho 1 (2 nd read)-Aiforia	-1.04	0.0012*	0.31	0.9994	0.98
Patho 1 (2 nd read)-Patho 1	0.61	0.0634	0.33	0.0317*	0.95
Patho 1 (2 nd read)-Patho 2	-3.31	<.0001*	0.67	1.000	0.89
Patho 1 (2 nd read)-Halo	1.23	0.0113*	0.48	0.0056*	0.90

Table 2: Summary of matched pairs analysis of Ki-67 quantification on breast cancer tumors (n=109). Cell color coding for r²: green >0.90; orange: 0.90 - 0.80; yellow: 0.80 - 0.75

As indicated in table 2 and figure 3, intra-pathologist analysis showed a very high reproducibility (r²=0.95) while matched pair analysis between two pathologists was lower (r²=0.86) despite following guidelines. Our study also shows a high consistency of Ki-67 results between AI and the other methods (patho A-AI, r^2 =0.92; B-AI, r^2 =0.90; Halo-AI, r^2 =0.93). The correlation obtained between Halo scoring was not as good, but within an acceptable range (Halo-A, $r^2=0.79$, Halo-B, $r^2=0.84$).

Results: Time needed to complete each analysis

Patho2 (% Ki-67)

Mean: (Halo (% Ki67) + Patho2 (% Ki-67))

Fig 4: Comparison of the process times required for each method for Ki-67 quantification in hours.

The deep learning Al approach was the quickest by far even when including the model training (total time: 2hrs 51min). Pathos time ranged from 22 to 28hrs without a major gain in analysis time in the second review. Halo took 28 hours including application development, pathologist verification, and analysis.

Conclusion

Overall, the Ki-67 tumor analysis approaches were quite comparable which is similar to our previous analysis with the Ki-67 30-9 clone (4). Al-based image analysis tools offer valuable assistance in Ki-67 scoring and could reduce inter-pathologist variability. These results demonstrate a significant time benefit of using an Al-driven method for Ki-67 analysis in breast cancer ensuring that Ki-67 services are delivered efficiently and effectively.

References:

- ¹ Polley MY et al. An international study to increase concordance in Ki-67 scoring. Mod Pathol. 2015 Jun; 28(6):778-86. doi: 10.1038/modpathol.2015.38.
- ² Nielsen TO et al. Assessment of Ki-67 in Breast Cancer: Updated Recommendations From the International Ki-67 in Breast Cancer Working Group.
- J Natl Cancer Inst. 2021 Jul 1;113(7):808-819. doi: 10.1093/jnci/djaa201.
- ³ Welcome to Ki-67-QC calibrator. URL [http://www.gpec.ubc.ca:8080/tmadb-0.1/calibrator/index]
- ⁴ Pichon X et al. ESMO 2023.